
Three	people	have	just	fallen	past	that	window

Graphical	User	Interfaces	–	Part	1
Introduction
A	graphical	user	interface	(GUI)	allows	users	to	interact	with	a	computer	using,
for	example,	a	mixture	of	icons,	displays	of	text	and	graphics,	and	graphical	elements
called	widgets.	Most	tools	these	days	have	one	or	more	GUIs	and	so	it	is	important
for	software	engineers	to	be	able	to	design	and	implement	GUIs.	In	this	section	we
introduce	some	GUI	basics	via	examples.	We	do	not	go	into	details	of	what	makes
good	GUI	design	–	this	is	left	to	other	courses.

Most	programming	languages	provide	a	mechanism	for	users	to	be	able	to	write
GUIs.	The	Python	community	have	developed	several	GUI	libraries	and	most	of	them
are	portable	across	different	platforms.	The	library	we	will	use	in	this	section	is	
tkInter	which	is	a	Python	library	that	provides	access	to	the	Tk	widget	toolkit.	tkInter
is	part	of	the	default	Python	installation,	and	IDLE’s	GUI	is	written	in	tkInter.

Note:	Running	GUI	Applications

Do	not	run	any	GUI	applications	within	IDLE	—	i.e.	do	not	use	Run	Module.
Instead,	run	the	program	from	outside	IDLE.	In	Windows,	for	example,	simply
double	click	on	the	program	icon	to	run	the	program.	The	problem	is	that	the
main	loop	of	IDLE’s	Python	interpreter	and	our	GUI	application’s	main	loop	do
not	play	well	together.	We	can,	of	course,	still	use	IDLE	to	edit	(and	save)	our
programs.

Running	GUI	applications	in	Windows:

Double-clicking	on	a	file	with	a	.py	extension	will	start	Python.exe	(creating	a
new	console	window).	The	script	will	then	be	loaded	and	this	will	result	in	the
creation	of	the	tkInter	application	window.	For	debugging	purposes,	the
console	window	is	where	error	messages	and	prints	are	written.	To	stop	the
console	from	appearing,	rename	the	file	to	give	it	a	.pyw	extension.	This	will
cause	Pythonw.exe	to	start.	This	version	of	Python	does	not	start	up	a	console
window.

In	Windows	if	an	error	is	raised	while	creating	the	GUI	then	the	program	will
close	and	so	will	the	console	window.	This	means	that	the	error	message	will
not	be	able	to	be	seen.	If	this	happens,	run	the	program	from	inside	IDLE,	this
will	allow	the	message	to	be	seen.	Fix	the	problem,	then	continue	to	run	from
outside	IDLE.

Aside:	Useful	Websites

Online	introductions	to	tkInter	which	may	be	useful	can	be	found	at
http://thinkingtkinter.sourceforge.net

http://thinkingtkinter.sourceforge.net/

GUI	Structure
We	mentioned	that	a	GUI	is	composed	of	widgets,	it	is	really	made	by	packing
widgets	into	other	containers	and	widgets.	The	tkinter	library	has	many	widgets	that
can	be	used	as	well	as	commands	to	pack	the	widgets	to	make	the	GUI	look	the	way
we	want.

Let’s	first	have	a	look	at	a	very	simple	example	for	our	first	GUI,	we	will	revisit	the
Hello	World	example	we	met	earlier	in	the	course.	This	example	will	consist	simply	of
a	window	with	a	Label	widget	that	has	the	text	"Hello	World!"	in	it.	We	will	also	give
the	window	a	similar	title.	The	following	is	the	code	that	will	create	this	for	us.

import	tkinter	as	tk

root	=	tk.Tk()

root.title('HelloWorld	Example')

hw	=	tk.Label(root,	text='Hello	World!')
hw.pack()

root.mainloop()

The	first	line	of	code	is	an	import	that	imports	the	tkinter	library	and	gives	it	the	alias	
tk.	This	form	of	import	allows	“renaming”	long	named	modules	into	shorter,	easier	to
type	names.	The	second	line	creates	a	variable	root	that	has	the	value	of	an	instance
of	the	Tk	class.	This	Tk	instance	is	the	main	window	that	our	GUI	is	created	in,	it
can	be	thought	of	as	our	first	widget	that	all	other	widgets	are	going	to	be	in.	By
convention,	the	variable	name	root	is	used	to	store	the	Tk	instance.	The	next	line	calls
the	title	method	of	the	Tk	class.	This	method	takes	a	string	argument	that	becomes
the	title	of	the	window.	The	next	line	creates	another	variable,	hw,	and	stores	a	Label
class	instance	in	it.	The	Label	constructor	takes	as	a	first	argument	the	parent	widget
that	it	is	to	be	contained	in,	in	this	case	we	want	to	contain	our	label	inside	our	main
window.	The	second	argument	sets	the	text	input	to	the	string	'Hello	World!'.	The
second	last	line	calls	the	pack	method	of	the	Label	class.	All	widgets	have	this	pack
method	and	by	calling	it	we	are	telling	Tk	that	we	want	the	widget	to	be	displayed	in
its	parent	widget.	The	last	line	calls	the	mainloop	method	of	the	Tk	class.	This	method
starts	the	main	loop	of	Tk.	This	is	responsible	for	sizing	and	displaying	widgets	and
handling	events	such	as	mouse	events,	keyboard	events	and	timer	events.	This	loop
will	continue	until	the	window	is	closed.

Aside:	grid

The	other	main	method	that	can	be	used,	other	than	pack,	for	arranging	Tk
widgets	is	grid,	which	involves	structuring	widgets	in	a	grid	layout	with	a	fixed
number	of	rows	and	columns.	We	will	not	be	using	grid	in	this	course.

Let’s	now	save	our	code	as	hello_world_gui.py	and	have	a	look	at	our	first	GUI.
Remember	not	to	run	it	in	IDLE.	Also	remember	that	the	window	will	look	different
depending	on	the	operating	system	it	is	being	used	on.

The	first	thing	we	notice	is	that	the	window	already	has	the	minimize,	maximize	and

close	buttons.	tkInter	creates	these	automatically	for	us.	We	also	notice	that	the
window	can	be	resized	as	normal	so	we	can	make	it	look	as	follows.

Note	that	when	we	resize	the	window	to	make	it	bigger	the	label	will	centre	itself
horizontally	but	stay	at	the	top	of	the	window.	This	is	the	default	positioning	used	by
pack.	Soon	we	will	see	how	to	use	pack	to	get	different	positioning.

Basic	GUI	Code

import	tkinter	as	tk

root	=	tk.Tk()

root.title('Title	String')

var_1	=	tk.Widget(parent_widget,	[config_args])
var_1.pack([pack_args])
				.
				.
				.
var_n	=	tk.Widget(parent_widget,	[config_args])
var_n.pack([pack_args])

root.mainloop()

This	is	the	basic	GUI	code	layout	for	tkInter.	Here	Widget	is	the	type	of	widget
that	is	to	be	created,	parent_widget	is	the	widget	that	the	current	widget	is	to	be
packed	into,	config_args	allow	optional	configuration	of	the	widget	upon
creation,	and	pack_args	are	used	to	arrange	the	widget	inside	its	parent	widget
(we	will	have	a	look	at	these	options	soon).	These	arguments	follow	the	form	
argument_name=argument_value.

Layout
Side

Having	all	the	widgets	of	our	GUI	set	to	the	top-centre	of	the	screen,	as	in	the
previous	example,	is	not	particularly	useful.	This	is	especially	true	when	we	start
getting	many	widgets	and	want	more	complex	layouts.	The	pack	method	we	used	in
the	previous	example	has	many	optional	arguments	that	allow	us	to	place	the	widgets
almost	wherever	we	want	them.

Let’s	have	a	look	at	some	simple	packing	examples	that	will	place	Label	widgets	at
different	edges	of	the	screen.

import	tkinter	as	tk

root	=	tk.Tk()

root.title("Packing")

right	=	tk.Label(root,	text="I	want	to	sit	to	the	right",	bg="light	blue")

right.pack(side=tk.RIGHT)

left	=	tk.Label(root,	text	=	"It's	to	the	left	for	me",	bg="green")
left.pack(side=tk.LEFT)

bottom	=	tk.Label(root,	text="I	want	to	lie	on	the	bottom",	bg="red")
bottom.pack(side=tk.BOTTOM)

bottom2	=	tk.Label(root,	text="I	also	want	to	lie	on	the	bottom",	bg="pink")
bottom2.pack(side=tk.BOTTOM)

root.mainloop()

This	code	is	very	similar	to	our	Hello	World	example	before	but	we	have	three	labels
instead	of	one.	We	have	also	added	an	extra	argument	to	the	Label,	bg,	which	is	short
for	background;	it	sets	the	background	colour	of	the	widget	to	the	colour	specified	in
the	given	string.

This	colour	string	can	be	in	words,	as	long	as	the	colour	is	in	the	list	of	possible
colours.	Alternatively,	we	can	specify	the	RGB	value	of	the	colour,	which	represents
the	amount	of	red,	green	and	blue	in	the	colour.	This	is	done	with	a	hash	(#)	followed
by	six	hexadecimal	digits.	A	hexadecimal	number	is	a	number	in	base	16	rather	than
base	10	(decimal	numbers).	Because	hexadecimal	numbers	are	base	16	we	need
hexadecimal	digits	for	the	numbers	10,11,12,13,14,15.	These	are,	respectively,	
a,b,c,d,e,f.	So,	the	hexadecimal	number	ff	is	the	(decimal)	number	255	–	i.e.	15*16+15.
In	a	hexadecimal	number	representing	a	colour,	the	first	two	digits	represent	the	red
component,	the	next	two	the	green	component,	and	the	last	two	the	blue	component.
So	#ffffff	is	maximum	red,	green	and	blue	–	i.e.	white	and,	conversely,	#000000	is
black.

Also	notice	that	there	is	now	an	optional	argument	inside	the	pack	method	calls.	This
is	the	side	argument,	which	tells	the	widget	to	sit	towards	the	edge	of	the	given
direction	(TOP,	BOTTOM,	LEFT,	RIGHT).	Also	notice	that	the	side	names	are	in	all	caps.	This
is	because	these	are	constants	in	the	tkInter	library.

Aside:	Colour	Options

The	list	of	possible	named	colours	for	Tk	can	be	found	at

After	saving	the	code	to	pack_side.py,	we	can	test	have	a	look	at	the	result.

Notice	how	the	widgets	are	tightly	packed.	Tk	will	keep	the	window	to	a	size	that	just
fits	in	all	the	widgets.	Let’s	experiment	with	expanding	the	window.

Notice	the	positioning	of	the	widgets.	Using	side	places	widgets	into	four	quadrants	of
the	window.	Widgets	are	also	arranged	in	the	order	they	are	packed:	the	red	label
was	packed	before	the	pink	one,	so	the	red	one	was	placed	on	the	bottom	before	the
pink	one.	Also	notice	that	the	background	colour	only	fills	up	the	area	of	the	text	in
the	Label	widget,	and	the	remainder	of	the	window	is	the	unused	grey	background.
When	the	window	expands,	tkInter	allocates	more	space	for	the	widgets	to	sit	in.
Because	the	widgets	don’t	change	size,	they	sit	in	the	centre,	and	the	extra	space	is
filled	in	with	grey	background.	The	image	above	has	been	digitally	altered	and
reproduced	below,	with	black	boxes	indicating	the	space	which	is	allocated	for	that

widget	to	occupy.	Because	the	blue	and	green	labels	were	packed	first,	the	red	and
pink	labels	do	not	get	the	entire	width	of	the	window,	only	what	was	remaining	when
they	were	packed.

Anchor

When	the	window	expands,	each	of	the	widgets	is	left	in	the	centre	of	its	allocated
space.	The	pack	option	anchor	can	be	used	to	specify	the	direction	the	widget	will	sit
when	the	widget	is	given	more	space.	The	anchor	argument	uses	the	compass	system,
valid	arguments	are	N,	E,	S,	W,	NE,	SE,	SW,	NW,	CENTER	(note	the	American	spelling).	Here	is
an	example	of	widgets	arranged	using	anchor:

import	tkinter	as	tk

root	=	tk.Tk()

root.title("Packing")

right	=	tk.Label(root,	text="I	want	to	sit	to	the	right",	bg="light	blue")
right.pack(side=tk.TOP,	anchor=tk.E)

left	=	tk.Label(root,	text	=	"It's	to	the	left	for	me",	bg="green")
left.pack(side=tk.TOP,	anchor=tk.W)

bottom	=	tk.Label(root,	text="I	want	to	lie	on	the	bottom",	bg="red")
bottom.pack(side=tk.TOP,	anchor=tk.S)

root.mainloop()

We	save	our	code	to	pack_anchor.py	and	have	a	look	at	the	result.

We	have	packed	all	the	labels	with	the	argument	side=TOP,	so	they	appear	stacked
from	top	to	bottom	in	the	order	they	were	packed.	If	the	side	argument	is	not	given,	it
defaults	to	TOP,	so	we	could	have	left	it	out	of	the	packing	arguments,	but	we	have
included	it	as	an	explicit	reminder	that	we	want	the	labels	to	be	arranged	top-to-
bottom.	Let’s	expand	the	window	and	see	what	it	looks	like.

Notice	how	the	widgets	have	moved	left	and	right	but	not	changed	the	vertical
position.	anchor	has	“pinned”	the	widgets	in	the	direction	specified.	For	clarity,	we
again	digitally	modify	this	image	to	show	the	space	that	each	widget	has	been	given.
Notice	that	the	red	label	has	been	anchored	to	the	south	side,	but	because	it
consumes	all	its	allocated	space	vertically,	we	cannot	observe	any	difference.

Expand

We	have	already	observed	that	tkInter	allocates	the	minimal	space	needed	to	contain
the	widget,	even	when	the	window	is	resized.	The	expand	packing	option	allows
widgets	to	be	allocated	as	much	space	as	possible	when	the	window	is	resized.	The
following	example	(pack_expand.py)	makes	use	of	this	option.

import	tkinter	as	tk

root	=	tk.Tk()

root.title("Packing")

right	=	tk.Label(root,	text="I	want	to	sit	to	the	right",	bg="light	blue")
right.pack(side=tk.RIGHT)

left	=	tk.Label(root,	text	=	"It's	to	the	left	for	me",	bg="green")
left.pack(side=tk.LEFT,	expand=True)

bottom	=	tk.Label(root,	text="I	want	to	lie	on	the	bottom",	bg="red")
bottom.pack(side=tk.BOTTOM)

bottom2	=	tk.Label(root,	text="I	also	want	to	lie	on	the	bottom",	bg="pink")
bottom2.pack(side=tk.BOTTOM)

root.mainloop()

This	is	equivalent	to	the	first	example,	but	the	left	label	is	packed	with	the	argument	
expand=True.	By	default,	expand	is	False,	so	for	simplicity,	we	leave	it	out	when	it	is	not
required.	When	we	resize	the	window,	we	see	this:

With	digital	modifications	to	the	image	above,	we	show	that	the	space	allocated
around	the	green	label	expands	in	both	directions	when	the	window	is	resized,	while
the	red	and	pink	labels	do	not	gain	any	more	space.	We	can	also	clearly	see	that	the
green	label	has	been	anchored	to	the	centre.

When	multiple	widgets	have	the	expand=True	option,	they	all	expand	equally.	For
example,	if	this	option	were	turned	on	for	the	pink	and	red	labels,	resizing	the
window	vertically	would	give	each	one	the	same	amount	of	extra	space	(equivalent	to
half	the	distance	the	window	is	resized).	This	will	be	demonstrated	in	the	section
below.

Fill

When	we	resize	the	window,	the	widgets	themselves	stay	the	same	size,	but	tkInter
allocates	more	space	to	surround	the	widgets,	based	on	their	anchor	and	expand	values.
The	fill	option	specifies	whether	the	widget	should	grow	to	fill	the	space	allocated
for	it.	Valid	arguments	are	X,	Y,	BOTH,	NONE,	which	represent	filling	in	the	horizontal	(X)
and	vertical	(Y)	dimensions,	both	dimensions,	or	neither	(which	is	the	default	option).
The	following	example	is	similar	to	previous	examples,	and	makes	use	of	the	fill
parameter:

import	tkinter	as	tk

root	=	tk.Tk()

root.title("Packing")

right	=	tk.Label(root,	text="I	want	to	sit	to	the	right",	bg="light	blue")
right.pack(side=tk.RIGHT,	fill=tk.X)

left	=	tk.Label(root,	text	=	"It's	to	the	left	for	me",	bg="green")
left.pack(side=tk.LEFT,	fill=tk.Y)

bottom	=	tk.Label(root,	text="I	want	to	lie	on	the	bottom",	bg="red")
bottom.pack(side=tk.BOTTOM,	expand=True,	fill=tk.BOTH)

bottom2	=	tk.Label(root,	text="I	also	want	to	lie	on	the	bottom",	bg="pink")
bottom2.pack(side=tk.BOTTOM,	expand=True,	fill=tk.Y)

root.mainloop()

This	code	can	be	downloaded	as	pack_fill.py.	When	we	run	this	code	and	resize	the
window,	we	get	this	result:

As	with	the	previous	examples,	we	add	black	borders	to	show	the	space	allocated
around	each	widget:

Note	that	the	pink	and	red	labels	have	been	expanded,	and	together	they	now	occupy
the	full	height	of	the	screen.	The	red	label	has	been	filled	in	both	dimensions,	taking
up	the	entire	space	it	can	use.	The	pink	label	has	been	filled	vertically,	so	it	uses	the
full	height	available	to	it,	but	there	is	still	grey	background	to	the	left	and	right	of	it.
The	green	label	has	also	been	filled	vertically,	but	because	it	does	not	expand
horizontally,	it	appears	to	fill	its	entire	space.	The	blue	label	has	been	filled	in	the	X
dimension,	but	because	the	label	does	not	expand,	this	has	no	effect.

Padding

For	finer	control	of	the	size	and	spacing	of	widgets,	we	can	use	the	padding	options,	
padx,	pady,	ipadx,	ipady,	which	allow	us	to	specify	an	amount	of	space	to	include	around
the	widget,	on	the	inside	and	outside	of	the	widget	(specified	as	a	number	of	pixels).
The	following	example	demonstrates	the	use	of	these	options.

import	tkinter	as	tk

root	=	tk.Tk()

root.title("Packing")

right	=	tk.Label(root,	text="I	want	space	to	the	side",	bg="light	blue")
right.pack(side=tk.TOP,	padx=30)

left	=	tk.Label(root,	text	=	"I	am	very	wide",	bg="green")
left.pack(side=tk.TOP,	ipadx=30)

bottom	=	tk.Label(root,	text="I	want	space	above	and	below",	bg="red")
bottom.pack(side=tk.TOP,	pady=30)

bottom2	=	tk.Label(root,	text="I	am	very	tall",	bg="pink")
bottom2.pack(side=tk.TOP,	ipady=30)

root.mainloop()

This	is	available	to	download	as	pack_pad.py.	When	we	run	this	code,	we	get	the	result
shown	in	the	first	image	below.	The	second	image	has	been	modified	to	include
borders	around	the	labels,	shown	in	purple.

	

The	padx	adds	space	to	the	left	and	right	of	the	label,	shown	by	the	blue	label.	If	any
widgets	were	to	be	added	to	the	sides	of	this	label,	or	if	the	blue	label	were	to	be
resized,	this	space	would	remain	the	same.	Similarly,	the	pady	inserts	padding	above
and	below	the	red	label,	and	the	other	labels	are	moved	to	accommodate	the	extra
space.	The	ipadx	and	ipady	options	insert	padding	around	the	widget,	but	on	the	inside
of	the	widget,	which	makes	the	labels	appear	larger,	as	shown	with	the	green	and
pink	labels.

Packing	Options

The	pack	method	of	tkInter	widgets	supports	the	following	optional	arguments,
which	affect	how	the	widgets	are	arranged	and	displayed	on	the	screen:

Option Description

side
Specify	which	edge	to	pack	this	widget	against.	Can	be	TOP,	BOTTOM,	LEFT
or	RIGHT	(if	not	specified,	defaults	to	TOP).	Multiple	widgets	can	be
packed	on	the	same	side	to	appear	next	to	each	other.

anchor
Specify	where	to	position	this	widget,	inside	the	space	which	is
allocated	for	it.	Can	be	N,	NE,	E,	SE,	S,	SW,	W,	NW	or	CENTER	(defaults	to	
CENTER).

expand

Specify	(with	a	boolean	value)	if	the	space	allocated	around	the	widget
should	grow	and	shrink	as	the	window	is	resized.	Note	that	without	the
fill	option,	the	widget	itself	will	not	be	resized,	but	there	will	be	more
space	around	it.

fill

Specify	if	the	widget	should	fill	in	the	space	allocated	around	it,	in	one
or	both	of	the	x	and	y	dimensions.	Can	be	BOTH,	X,	Y	or	NONE	(defaults	to	
NONE).	When	used	with	expand=True,	the	widget	will	grow	when	the
window	is	resized;	this	is	useful	for	widgets	which	should	always	take
up	as	much	of	the	screen	as	possible,	such	as	the	main	view	area	of	the
application.

padx,	
pady,	
ipadx,	
ipady

Specify	the	amount	of	space	to	place	inside	or	around	this	widget,	in
pixels.	padx	and	pady	will	place	a	certain	amount	of	background	space
around	the	widget.	ipadx	and	ipady	will	add	space	inside	the	widget,
making	it	larger.

Experimenting	with	different	combinations	of	packing	order,	and	different
combinations	of	side,	anchor,	expand,	fill,	and	the	pad	options,	will	assist	in
understanding	the	behaviour	of	these	settings.

Frames
The	pack	options,	side	and	anchor,	only	have	limited	capability	for	layout.	To	give	us
many	more	options	we	use	a	widget	called	Frame.	The	Frame	widget	is	a	blank	widget
used	for	simply	containing	widgets.	This	is	very	useful	for	creating	simple	through	to
complex	GUI	layouts	as	it	can	give	us	the	ability	to	partition	widgets	into	groups	and
position	each	group.

In	the	next	section,	we	are	going	to	build	a	simple	game	which	involves	moving	a
circle	around	the	screen.	We	will	have	four	buttons	to	represent	up/down/left/right
controls,	and	a	blank	“game	screen”	area	which	will	show	the	movement	of	the	circle.
For	now,	we	will	investigate	the	layout	of	the	GUI,	using	Labels.	Shortly,	we	will
replace	these	labels	with	other	kinds	of	widgets.

import	tkinter	as	tk

root	=	tk.Tk()
root.title("Look	what	we	can	do	with	frames")

#	"Button"	labels

controls	=	tk.Frame(root)

up	=	tk.Label(controls,	text="UP")
up.pack(side=tk.TOP)

left	=	tk.Label(controls,	text="LEFT")
left.pack(side=tk.LEFT)

down	=	tk.Label(controls,	text="DOWN")
down.pack(side=tk.LEFT)

right	=	tk.Label(controls,	text="RIGHT")
right.pack(side=tk.LEFT)

controls.pack(side=tk.LEFT)

#	screen	Label

screen	=	tk.Label(root,	text="screen",	bg="light	blue",	width=38,	height=16)
screen.pack(side=tk.LEFT,	expand=True,	fill=tk.BOTH)

root.mainloop()

Similar	to	the	Label,	the	arguments	to	the	Frame	constructor	are	the	parent	widget	(in
this	case,	root),	and	any	configuration	options.

The	code	for	the	Labels	is	still	mostly	the	same	as	we	have	seen	before.	The	biggest
difference	is	the	parent	widget	is	no	longer	root.	For	the	“buttons”	we	have	given	the
parent	as	controls.	This	makes	the	labels	get	packed	into	the	controls	Frame.	For	the	
screen	label,	we	set	a	width	and	height	to	make	it	fairly	large	and	square.
Experimenting	with	different	values	for	width	and	height	will	eventually	give	an
acceptable	size.	We	also	set	the	screen	to	expand	and	fill	when	the	window	changes
size.

Let’s	now	save	our	code	to	frame_game.py	and	see	what	we	have	created.	For	clarity,	we
also	show	a	digitally	altered	image	indicating	the	borders	of	the	labels	(in	green)	and
the	frame	(in	red).

	

The	four	control	labels	have	been	arranged	within	the	frame	as	if	they	were	arranged
in	their	own	window.	The	frame	can	then	be	placed	within	the	window,	and	all	four
buttons	will	stay	grouped	together.	If	this	layout	was	attempted	using	the	side	and	
anchor	options	alone,	it	would	be	very	difficult.

Buttons
Having	Labels	representing	buttons	does	not	have	much	point.	Let’s	now	introduce	the
real	thing,	the	Button	widget.	We	now	rewrite	our	code	from	above	using	the	Button
widget	instead	of	Label	widgets.	We	also	want	the	buttons	to	appear	the	same	size,	so
we	will	set	a	width	for	each	one.	Because	all	four	should	have	the	same	width,	we	will
store	the	width	value	as	a	constant,	BUTTON_WIDTH,	to	ensure	we	are	always	using	the
same	width.

import	tkinter	as	tk

BUTTON_WIDTH	=	10

root	=	tk.Tk()
root.title("Buttons	are	good")

#	Buttons
controls	=	tk.Frame(root)

up	=	tk.Button(controls,	text="UP",	width=BUTTON_WIDTH)
up.pack(side=tk.TOP)

left	=	tk.Button(controls,	text="LEFT",	width=BUTTON_WIDTH)
left.pack(side=tk.LEFT)

down	=	tk.Button(controls,	text="DOWN",	width=BUTTON_WIDTH)
down.pack(side=tk.LEFT)

right	=	tk.Button(controls,	text="RIGHT",	width=BUTTON_WIDTH)
right.pack(side=tk.RIGHT)

controls.pack(side=tk.LEFT)

#	screen	Label

screen	=	tk.Label(root,	text="screen",	bg="light	blue",	width=38,	height=16)
screen.pack(side=tk.LEFT,	expand=True,	fill=tk.BOTH)

root.mainloop()

Creating	the	Button	widgets	is	again	rather	simple	as	they	use	similar	arguments	to
other	widgets	we	have	used.	Let’s	now	save	our	code	as	game_screen.py	and	have	a	look
at	our	new	GUI.

Making	Buttons	Work

We	would	like	to	add	functionality	to	our	buttons,	so	that	pressing	the	button	will
execute	a	task.	We	do	this	by	writing	a	function	that	tkInter	can	call	when	the	button
is	pressed.	When	we	create	the	Button,	we	tell	it	what	function	to	use	through	the	
command	argument.	For	now,	we	will	get	the	buttons	to	simply	print	to	the	console.	We
write	four	functions,	one	for	each	button:

import	tkinter	as	tk

BUTTON_WIDTH	=	10

root	=	tk.Tk()
root.title("Buttons	are	good")

#	Functions	for	the	buttons	to	call

def	push_up():
				print("UP")

def	push_down():
				print("DOWN")

def	push_left():
				print("LEFT")

def	push_right():
				print("RIGHT")

#	Buttons

controls	=	tk.Frame(root)

up	=	tk.Button(controls,	text="UP",	width=BUTTON_WIDTH,	command=push_up)
up.pack(side=tk.TOP)

left	=	tk.Button(controls,	text="LEFT",	width=BUTTON_WIDTH,	command=push_left)
left.pack(side=tk.LEFT)

down	=	tk.Button(controls,	text="DOWN",	width=BUTTON_WIDTH,	command=push_down)
down.pack(side=tk.LEFT)

right	=	tk.Button(controls,	text="RIGHT",	width=BUTTON_WIDTH,	command=push_right)
right.pack(side=tk.LEFT)

controls.pack(side=tk.LEFT)

#	screen	Label

screen	=	tk.Label(root,	text="screen",	bg="light	blue",	width=38,	height=16)
screen.pack(side=tk.LEFT,	expand=True,	fill=tk.BOTH)

root.mainloop()

The	command	argument	takes	a	function,	which	is	called	when	the	button	is	pressed.	We
do	not	want	to	execute	the	function,	we	want	to	take	the	function	itself	and	give	it	to
the	Button.	To	do	this,	we	do	not	place	parentheses	after	the	function	name.	By
passing	the	function	itself	to	the	Button,	we	give	the	Button	the	ability	to	call	the
function	at	any	time	(in	particular,	whenever	the	button	is	pressed).	In	this	situation,
the	function	is	known	as	a	callback	function,	because	we	give	the	Button	the	ability	to
call	back	to	a	function	in	the	application	code.

This	code	is	available	as	game_screen1.py.	Each	time	we	press	a	button	it	prints	out	to
the	console.

The	Entry	Widget
We	have	seen	how	to	interact	with	the	user	through	buttons,	but	what	about	other
methods,	such	as	text?	tkInter	has	a	widget	for	this	called	the	Entry	widget.	The	entry
widget	is	a	small	box	that	the	user	can	enter	text	into.

We	will	start	with	a	simple	application	that	evaluates	an	expression	and	prints	the
result	to	the	console.	We	will	require	a	Label	to	label	our	Entry	widget,	the	Entry
widget,	and	a	Button	to	evaluate	the	expression.	The	code	is	as	follows:

import	tkinter	as	tk

root	=	tk.Tk()

root.title('Expression	Evaluator')

label	=	tk.Label(root,	text='Enter	Expression:	')

label.pack(side=tk.LEFT)

entry	=	tk.Entry(root,	width=20)
entry.pack(side=tk.LEFT)

def	evaluate():
				expression	=	entry.get()
				try:
								result	=	eval(expression)
								print("The	Result	is:	{0}".format(result))
				except	Exception	as	e:
								print("An	error	occurred:	{0}".format(e))

calc	=	tk.Button(root,	text="Evaluate",	command=evaluate)
calc.pack(side=tk.LEFT)

root.mainloop()

The	second	widget	we	create	is	the	Entry	widget.	We	have	also	used	the	optional
argument	width	to	specify	that	we	want	the	text	area	to	be	20	characters	wide.	We
then	wrote	the	evaluate	function	to	take	the	input	and	print	the	result.	In	the	first	line
we	used	the	get	method	of	the	Entry	widget.	This	method	returns	what	is	in	the	text
area	as	a	string.	In	this	case	it	is	our	expression.	The	next	line	uses	Python’s	eval
function.	eval	takes	a	string	representing	a	Python	expression	and	evaluates	it,
returning	the	result.

>>>	eval("2+5*4")
22

It	is	possible	that	the	user	has	entered	an	invalid	expression	or	an	expression	that	will
raise	an	exception,	so	we	place	a	try-except	statement	around	it	to	print	out	the	error
message.	The	last	thing	the	evaluate	function	does	is	print	out	the	result	with	a
message.	Let’s	save	our	code	as	simple_evaluator.py	and	test	it.

It	would	be	good,	however,	to	be	able	to	do	more	than	just	print	to	the	console.

Changing	Widgets
All	widgets	also	have	a	method	that	allows	us	to	change	the	way	a	widget	looks.	This
method	is	the	config	method.	It	has	the	same	optional	arguments	as	the	constructor	of
the	widget.	Let’s	extend	our	code	so	that	instead	of	printing	the	result	to	the	console,
it	changes	the	text	in	a	Label	so	that	the	result	is	in	the	application	itself.	If	there	is	an
error	message	to	show,	we	will	also	change	the	background	colour	to	red.	To	make
this	work,	we	must	also	change	the	background	colour	back	to	grey	when	we	are
showing	a	result,	otherwise	the	label	would	stay	red	after	an	error	message	is	shown.

import	tkinter	as	tk

root	=	tk.Tk()

root.title('Expression	Evaluator')

label	=	tk.Label(root,	text='Enter	Expression:	')
label.pack(side=tk.LEFT)

entry	=	tk.Entry(root,	width=20)
entry.pack(side=tk.LEFT)

def	evaluate():
				expression	=	entry.get()
				try:
								result	=	eval(expression)
								answer.config(text="The	Result	is:	{0}".format(result),	bg="grey")
				except	Exception	as	e:
								answer.config(text="An	error	occurred:	{0}".format(e),	bg="red")

calc	=	tk.Button(root,	text="Evaluate",	command=evaluate)
calc.pack(side=tk.LEFT)

answer	=	tk.Label(root,	text="",	bg="grey")
answer.pack(side=tk.LEFT)

root.mainloop()

This	code	is	almost	the	same,	we	have	just	added	a	new	Label	and	changed	the	last
line	in	the	evaluate	function.	The	change	to	the	last	line	calls	config	on	our	new	Label,	
answer	and	sets	the	text	to	the	result.

Now	saving	our	code	as	simple_evaluator_nc.py,	we	can	have	a	look	at	our	new
application.

When	an	error	message	is	shown,	the	label	will	keep	the	error	message	visible	until	a
new	expression	is	entered.	This	may	be	discomforting	for	the	user,	so	we	consider
ways	to	fix	this	issue.	One	option	would	be	to	add	a	second	button	that	resets	the
label	back	to	grey	and	clears	the	message.	It	is	also	possible	to	reset	the	label
whenever	the	user	resumes	typing	in	the	Entry	box.

So	far	we	have	covered	a	lot	of	different	GUI	widgets	and	aspects	of	creating	GUIs.
Yet	we	have	been	writing	our	code	in	a	rather	linear	fashion.	In	the	remainder	of	this
section,	and	in	the	next	section,	we	will	look	at	restructuring	our	GUI	programs	using
classes.	This	is	to	make	the	source	code	easier	to	read	and	maintain.

GUI	Design	Using	Classes
Classes	can	be	used	to	simplify	our	GUI	code,	especially	as	the	GUI	and	program	gets
more	complex.	We	are	going	to	rewrite	our	expression	evaluator	using	a	class.	The
code	is	below:

import	tkinter	as	tk

class	EvalApp(object):
				"""Simple	application	to	allow	a	user	to	enter	an	expression	and	evaluate	it.
				"""

				def	__init__(self,	master):
								"""Initialise	the	expression	evaluator's	application	window.

								Parameters:
												master	(Tk):	Main	window	for	application.
								"""
								self._master	=	master

								master.title('Expression	Evaluator')
								self._num	=	0.0

								expressionLbl	=	tk.Label(master,	text='Enter	Expression:	')
								expressionLbl.pack(side=tk.LEFT)

								self._entry	=	tk.Entry(master,	width=20)
								self._entry.pack(side=tk.LEFT)
								self._entry.insert(tk.END,	str(self.num))

								evalBtn	=	tk.Button(master,	text="Evaluate",	command=self.evaluate)
								evalBtn.pack(side=tk.LEFT)

								self._result	=	tk.Label(master,	text="",	bg="grey")
								self._result.pack(side=tk.LEFT,	padx=20)

				def	evaluate(self):
								"""Evaluates	the	expression	in	the	Entry	widget	and	
											displays	the	result	in	the	result	Label.
								"""
								try:
												self._num	=	eval(self._entry.get())
												self._result.config(text="The	Result	is:	{0}".format(self._num),
																																bg="grey")
								except	Exception	as	e:
												self._result.config(text="An	error	occurred:	{0}".format(e),	bg="red")

root	=	tk.Tk()
app	=	EvalApp(root)
root.mainloop()

The	most	noticeable	change	is	the	order	of	the	code,	the	class	needs	to	be	written
first	so	that	the	class	is	defined	before	we	try	to	use	it.	The	next	thing	to	notice	is	the
use	of	master	as	a	parameter	in	the	class’	constructor,	and	as	the	parent	class	for	the
widgets.	master	is	used	by	convention	to	signify	the	“highest	level”	class.	master	is
passed	the	value	of	Tk	when	the	EvalApp	object	is	created.	We	have	added	a	self._num
instance	variable	as	well,	this	is	the	same	as	the	result	variable	we	used	before,	we
also	use	it	when	creating	the	Entry	widget	to	give	our	application	a	slightly	more
professional	look.	The	first	widget	we	create	is	a	Label,	but	we	do	not	assign	it	as	an
instance	variable.	As	we	just	want	this	widget	to	display	and	not	access	it	later,	we	do
not	need	to	store	it	in	the	class	structure.	We	do	the	same	for	the	Button	widget.

When	we	create	the	Entry	widget	this	time	we	also	use	the	insert	method.	insert
inserts	a	string	into	the	Entry	widget	at	a	location,	in	this	case	the	string	of	self._num	at
the	end	of	any	text	in	there.	The	rest	of	the	class	is	mostly	the	same	code	we	had
before.

After	the	class	definition	we	have	the	Tk	code.	In	this	case	we	only	need	three	lines
because	our	class	does	all	the	work.	The	first	and	last	line	we	already	know.	The
middle	line	creates	an	instance	of	our	class	passing	root	into	the	constructor.	As	root
is	an	instance	of	Tk,	we	are	passing	in	a	Tk	object.

We	can	now	save	our	code	as	evaluator_class.py	and	have	a	look.

Apart	from	the	small	changes	to	the	GUI	that	we	made	it	looks	and	works	exactly	the
same	as	what	we	had	before.

